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PREFACE

This lecture series is concerned with the transport description of damped
nuclear reactions. Of course, this subject can not be covered adequately in a few -
lectures, and some selection of topics must be made. The matenal presented in the

" notes is abstracted from work in which I have been personally involved. A large
_ part has already been published, or soon will be. So the interested student can find
" more breadth and depth in those papers. The notes are intended merely as a sup-
plement to the lectures, rather than a complete account of the subject; many of the
illustrations discussed in the lectures are not included in the notes.
 Part I is an elementary introduction to the general transport theory of
nuclear dynamics. It can be read without any special knowledge of the field,
although basic quantum mechanics is required for the formal derivation of the gen-
eral expressions. for the transport coefficients. The results can also be used in a
wider context than the present one.

Part II gives the student an up-to-date orientation about recent progress in
the understanding of the angular-momentum variables in damped reactions.  The
emphasis is here on the qualitative understanding of the physics rather than the, at
times somewhat tedious, formal denvanons More detailed presentations are due to
be published soon:

By necessity entire toplcs have been omitted. For example, no drscussron is :
given of the calculation of the form factors, and the several instructive applications
of the theory to transport of mass and change are not covered at all. For these
topics we refer to the literature. It is- hoped that the present notes provide a -
sufficient basis to make the literature on the subject accessible to the student.

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of -
High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.



- PARTI
GENERAL FRAMEWORK

This part introduces the general formal framework for our studies of nuclear dynamics.

1. ELEMENTS OF TRANSPORT THEORY

In this section we briefly review some pertinent elements of transport theory. We do not
wish to engage in a thorough discussion of transport theory but merely outline the relevant elements
in a language compatible with our later applications.

We consider a many-particle system and wish to focus our attention on certain variables
C = (%, %, .... €y) that are coupled to the residual system. We have in mind the frequently
encountered situation where the retained variables C represent certain macroscopic properties of the
system, such as the nuclear shape. We shall therefore often refer to C as the macroscopic variables.
In our subsequent treatment we shall make the basic assumption that the memory time of the resi-
dual system is short in comparison with the time scale characteristic of the evolution of the retained
variables. In that case the further time evolution of the retained variables depends only on the
current dynamical state of these variables and not on their history. The equation of motion is then
time local, which is a considerable simplification. The degree to whxch this approximation is valid
need be carefully discussed in each case considered.

We shall also assume that the macro variables C can be treated classxcally The object of
study is then the distribution function f(C;t), which gives the probability that the macroscopic
variables have the value C at the time ¢. The time evolution of the distribution function f(C;t)
has two sources: : ‘ ' S

1) The coupling of the retained variables C among themselves. This contribution is given
by Liouville’s equation, f = {J#,f} where #{(C) is the hamiltonian for the retained variables and
{-,} the Poisson bracket, and thus produces a purely conservative motion of the macro variables.
Therefore, we shall not consider this contribution further in the present discussion.

2) The coupling of the retained variables to the residual system. This is the contrxbutlon
that produces dissipative effects in the macroscopic evolution. Since the microscopic state of -the
residual system is not completely specified this coupling has a stochastic effect on the retained vari-
ables and statistical methods are called for. The approprlate formalistic framework is the subject of
this section.

It is useful to mtroduce the so-called macroscopic transition rate W(C — C’) Wthh gives
the probablllty density that the system, if prepared to be in the macro state characterized by the
macroscopic variables C, will make a transition to a state characterized by C’. [In general, W may
depend on auxiliary vanables such as the temperature of the residual system or, if the system is not
isolated, on time.]” The time evolutlon of the macroscopxc distribution function is then governed by
the master equation

F(C;t) = fdc’[W(C’ - C)f(C%t) - W(C — C')f(C;1)] (1

[For notational convenience only, we treat C as a continuous variable.] Here the first term
represents the gain in population of states characterized by C arising from transitions from other
macrostates. The second term represents the loss due to transitions from the current state to other
macrostates. It is important to the further development that each such elementary transition within
the system affect the macroscopic variables only relatively little, so that it requires many elementary
processes to effect an essential change in C. '

Most often, one is interested in the evolution of a distribution that is initially narrowly
confined around a specified value of C. Therefore, one can gain a good impression of the behavior
of f by studying its first few moments. In general, for any function g(C) we define the mean value
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€=<¢> . - ) E e
and their covariances . B - ' e _ :

0 =<6 €;>- <fe,><<e,> <A<¢,A<e, a o )

where AG, =€, - % is the deviation of €, from its mean value 6.
‘The time. evolution of these quantmes are readily obtained by use of the master equauon
* For. the mean values we find

=de @f”(C) "
- fdc @,fdc'[W(c'-»C)f(c') - W(C - C)f(C)]

- [ac facte - wamec-crr©) = <vi> B ©

Here we have introduced the drift coefficient

v = [dcte - sawe-e) | e

As the name suggests, (the mean value of) this quantity gives the mean rate of change, the ““drift”,
of the corresponding macroscopic variable.

v By proceeding in an analogous fashion we can calculate the evolution of the covariances.
We find, after some mampulatlon, ,

—de%‘Kf(C)-‘@,‘K, qz,fg,

—<DU +Djl +A(£[Vj + VA@_I . . ) R ‘ . (7)
' Here we have introduced the dtﬁ'uszon coefficient

Du_fdcf‘ft ‘&][‘fj WJ]W(C C')I" o SRR (8)

We notice that the diffusion coefficient matrix is symmetnc and that the dxagonal elements are posi--
tive, D; > 0. The name arises from the fact that for narrow distributions, when typical values of
AC are small, the rate of increase of the covariance o;; is given by (twice the mean value of) the
. corresponding diffusion coefficient D;;, so that these quantities govern the rate at which an initially
sharply peaked distribution grows diffuse as a consequence of its iriteraction with the unspecified
residual system. ..

While fairly general, the master equatxon is cumbersome to treat since it contains explicitly
the macro transition rates W(C C’), which depend on two macroscopic variable sets. When the
quantities we are interested in studying, g(C) generally, vary sufficiently smoothly with C, the mas-
ter equation (which is an integro-differential equation) can be replaced by a dlﬁ'eretmal equation of
the Fokker-Planck type:
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As is readily verified, for a given distribution f (C), the Fokker-Planck equation gives the same time
derivative of the mean values and covariances as the correspondmg master equation. The Fokker-
Planck equation is considerably easier to treat since it only requires the transport coefficients ¥;(C)
and D;;(C), which depend only on one set of macrovariables.

Despite the relative simplicity offered by the Fokker-Planck equation, it would still be a for-
midable task to determine its solution when C is a multidimensional quantity. Fortunately, it often
suffices to calculate the mean values and covariances of the solution. When the transport
coefficients are “‘well behaved” as functions of C ‘it is possxble to derive closed equations for @,
and g;; by expanding the transport coefficiénts around the mean location of the distribution. By
“well behaved’” we mean that the drift coefficients ¥; are approxxmately linear in C and the
diffusion coefficients are approximately constant, as would be the case in the harmomc idealization.
'We thus assume

V(@) =HE@) +TA%; go-|
j lc=C

~ Dy(€) =Dy(©) | N (10)
Insertion of these relations into the equations of motions for €, and o;; gives the following,

€, = Vi(C)

. —_ av; R
0;j = 2D,j(C) + <A(£,'§A‘gk 7€, + EA(gk —(g—k- A€;>
_ N/ o
= 2D,(C)- + (g —2— - e o
i](c) ?(Ulk 36, a(g akj) o o (11)

where the derivatives are understood to be evaluated at C = C. The above equations only require
information about the system at its mean position, and- it is therefore often referred to as the mean
trajectory approximation. It is important to recognize that this method not only yields information
about the mean evolution of the system but also ylclds mformatxon about its ﬁuctuauons as
expressed by the covariances o;;.

We note that for narrow distributions, havmg small g;;, the second term in (11) is unimpor-
" tant and the growth of oy is dominated by the diffusion coefficient. However, as the distribution
spreads the second term gains increasing importance. It counteracts the diffusive term and is instru-
mental in saturating the growth of ¢;; so that a stationary value is approached.  This equilibrium
situation is characterized by

V(C) =0 .
v, vy

i + {
36y . 36 . :
The first line represents N equations from which the N equilibrium mean values '€, can be deter-
_mmed Subsequently, the matnx equatxon in the second line can be solved for the ethbrlum
covariances, g;;.

‘ZDijv(C) +§(?’ik' Ukj) "'0 o L : o (12)

Simple example: Harmonic idealization in one dimension 4
Consider the simplest case where only one macroscopic variable, x say, enters. In the har-

monic idealization, which is often appropriate, the drift coefficient V is linear in x, so that we may
write ¥(x) = V’x (where the zero point for x has been chosen so that ¥(0) = 0, and the diffusion



coefficient D is independent of x.
The equations of motion for the mean value x and variance o® of x are then

I=<V>=<Vix>=Vk%
= <2D + AxV + VAx>
=D + <Ax x>V’ + V'<xAx>

=2D + 25*V’ : : (1Y)
Thus, when the transport coefficients are constant in time,

(1) = x(0)e""

(1) = o%(0) + [0() - (0)] [1- "] . ) 19
where the equilibrium variance is given by ¢%(20) = -D/V’. In this simplest case, the mean value
approaches zero in an exponential fashion with a relaxation time given by ¢t = 1/V” and the growth
of the variance towards its equxlxbrlum value 1s characterlzed by a relaxation tlme that is only half :
as long.

We note that the Fokker-Planck equatlon has solutlons of the gaussnan form
f(x; ,) [2,,02(,)] 2 ,-ix -x(r)12/2a2(r> v : S R (15)

where x(t) and oz(t) satlsfy the above moment equatlons When o%t) = 0 the above gaussian
reduces to the delta function §(x - X(¢)), which is the most common initial distribution. [A gen-
eral initial distribution can: be expanded  on .such delta - functions, - f(x;t=0) =
f dx 8(x - X) f(x), each having ¢®> = 0; the general dynamical distribution is then given by the .
corresponding sum of gaussians of the above type, which is therefore of general utility.]

2. FORMAL DERIVATION OF EXPRESSIONS FOR TRANSPORT COEFFICIENTS

It follows from the preceding discussion of transport theory that if the system considered is
initially prepared with sharp values of the macroscopic variables C then the evolution of mean
values and covariances, over times short.in comparison with the macroscopic relaxation times, is -
given by

d — _ _

dt ‘(g_— Ve (F_ .C,")
J . . A
E‘U@@'=2Drm" (C=C¢C,) : m

where C, is the initial sharply defined value of C. Therefore, if we wish to-calculate the transport-
coefficients ¥ and D for a given value C,, it suffices to prepare the system so that the values of the
macroscopic variables are initially sharply peaked at C, and then, by appropriate means, follow the
evolution of the mean values and covariances for tlmes long enough to allow the extractxon of their
time derivatives, which are then the transport coefficients. In the present section we employ this
method to derive general expressions for the transport coefficients.



2.1 Time-dependent perturbation treatment

Thus, consider an ensemble of quantal many-particle systems described by the hamiltonian
operator H,. The observables C = { €, €', - - - }, whose evolution we wish to study, are assumed to
commute among themselves, [‘6 @’] =0, as well as with the hamiltonian, [‘6 H,] = 0. There-
fore, it is possible to prepare the system so that these observables are sharply deﬁned That is to

say,
<€">=tr (‘é"b;) = €3 ‘ )

where €, = <€>=tr (‘gp,,) is the sharp value of ‘6 and the density matrix operator for the
sharply prepared ensemble is denoted p,. An analogous relation holds for powers of H,.
It is useful to introduce the operators :

A€ = qr %1* ’ - 3)

measurmg the dev1atron of the observables € from their initial rnean values %,. Their proper
eigenspaces are orthogonal to that of p, and consequently A ‘€po =0=p,A € . It also follows that
[€.p,] = 0. These properties will effect great simplification in the followmg

. After having prepared the system attime ¢t =0, a perturbatxon V is applied. Once tumed
on, V is assumed to remain constant in time. This operator represents the partrcular residual cou-
pling whose dissipative effect is the object of our study. The total hamiltonian is thus

CHe =0 =H,+V ‘ : ‘ : (4)
Because of the action of vV, the observables % are no longer constants of motion. Indeed, the expec-
tation value of € at a later time ¢ is given by

€@y = (U (¢t <—oj €U (1 —0)b,)

= Ol -0) @0 ~0h) o )
Here U (t <0) = fJo (t <0) U, (t. < 0) is the time evolution operator associated with H and
‘ Lg v , ,
U, (t =0) =et - (6)

is' the time evolution operator associated with H,. The interaction- representatron evolution operator
U, (¢t < 0) satisfies the equation

t
R . : -Lﬁﬂ.'imﬂ, a
U,(t~—0)=1—-'—fdt’e” C Veh U,(z’«—O) @)
o
from which U} (¢ < 0), can be determined recursrvely to ever hxgher order in the perturbation V.
Thus, to zeroth order, Uf? (¢ —~0) = 1 whlle, to first order UV (¢t «0) =1 - iT where we have
introduced the hermitian operator :

@ “Lpge . Lar
TE%fdt’e LIRS ' . ) (8)

To second order we find, after some calculation,
UP @0 =1-iT-17*+8"-§ (9



where

clge —H(r-t’) N ;':-ﬁor"' : e
S=— dt dt" ”, Vet Vet * L ) (10)
. 2f22 o , L v R

Therefore, through second order in V the expectatlon value is

€t) =t (I +iF -1 T2 +8-$N €d-iT -1 T* +57-8) ]

[ it -1 1) @ -iT -1 5]

Foy
+ir [(S -Sf) f{r;,,, + %(37-5)501 an

Here the second term cancels out because (g commutes w1th Po- We note that to either zeroth, ﬁrst,‘
or second order we may write o B

%(t) = <e't @eit>, : ' ' (12)

The above result for €(t) can be rewritten as follows

()= < +if -1 1) & -if -1 TH>,
= <@>, +i <T¥- €T>, + <T4T -

= <¥>, + <1 [T,[€.T]]>, (13)

As before, in the second line the second term vanishes because [‘é,po] =0
-We therefore obtam the followmg expressxon for the accumulated change in ‘6
Afg(z)_<A<g>, =<4 [T[rg T]]> e R - (14)

Furthermore, the accumulated covariance Adqg/(t) between two- observables ‘6 and €’ is given by

Aoge(t) = <AG AE>, = <L [T, [a¢ A%’,T]]>o
= <TAGAG'T>, = <[T,A¥] [A@',T]>o - B (15).

In this latter derivation it has been used repeatedly that A€ } bo = 0=b, A€ when p, describes a
system with sharp values of €. :

2.2 One-body approximation for short times

The above expressions for A€ and Ao are quite general, insofar as the perturbation
treatment is valid. In order to evaludte the transport coefficients the many-particle system must be
followed for some time At, which is long enough to extract the linear evolution of A€ and Acg g,
yet short on the macroscopic time scale. For such moderately short times it is possible to approxi-
mate the full many-body problem by an effective one-body problem (the mean field approximation).



We emphasize that the one-body approximation is only made for relatively short time intervals, for
which it is expected to be appropriate for nuclear problems. The long-term evolution of the system
is not expected to be adequately described as an effective one-body problem. In fact, the residual
interaction is instrumental in producing the dissipative phenomena in which we are interested.
Moreover, because of this fact, a transport-type description is more relevant for the long-term
dynamics.

Let us then specialize to the case where H is of 1ndependent-pamcle form’

Eck ek Ck - . ) ' R ' ‘ (16)
with ¢/ and ¢, being the single-particle creation and annihilation operators and ¢, the single-particle
energy. Furthermore, we assume that the perturbation V is also of one-body form, '

V=Eckf <k'|V|k> ¢, 4 \ a7
[It is assumed that ¥ describes only proper transmes S0 ‘that it has no diagonal elements:

<k| V| k> =0 ] Then, since our ensemble consists. of eigenstates for H,, the many-body operator
T (8) appearing in the expressions for A % and Ao ¢ ¢ can be replaced by a one-body operator ¢,

T_' t = Eck' tk’k Ck = Ektklk : . (18)
/ k/ ' . . .
where fyx = ¢ tyxcy and
1 . ';,'(‘k -Gt ' . : : ,
e = 3 <k’|V|k>fdz’e o o : (19)

o

Furthermore, we wish to restrlct our interest to one-body observables. Simce [‘6’ H,] =0,
a basis exists in which € is of diagonal form _

(g = Eck (gk Ck ’ . ) ' » ’ — (20)
k .

where €, = <k| €|k > is the contribution of the k’th single-particle orbital to the observable .

Finally, we wish to make certain statistical assumptions about the density matrix p,. Our
ensemble is defined by the sole requirement that the observables C have sharply defined values C,
so that all micro states satlsfymg this demand appear Therefore we may assume that the reduced
one-particle density matrix is diagonal : :

<k’|p§V| k> = dix S o | Q@

where f; € (0,1) is the mean occupation of the k’th single-particle orbital. Furthermore, we assume
that there are no specific two-particle correlatxons present so that the reduced two-particle density
matrix factorizes,

bo?)|k1k2>

pSV )k ”|k2> <k2|p,§‘>|k PV ky>-

=(kk, Koy ™ Ok, k'kz)f" Sk, o . (22)

With all the above specxallzatlons we now proceed to calculate the accumulated changes and
covariances. Since



[(g»;]=kl2k'k'k((gk""(€k)ckr’,ck - e D : (23)

" we find

A% = <L [L[&0]]> )

rr (41,0401 50)

3 D <kIGLENIk> o

"_'kzkl!k,’klz(\%k"-(g{k)_,fkw..v‘_' e . ( (24
and ' s f ‘

MAoge = <li, €] [€.i]>

C=tr ([{, ) [€.1] bé”)'

=% tatenr (€x =€) (G = i) <clereloer>
kk'k"k’" - . . . - X . .

= E [tk |? (€r - €x) (Gk = €i) Fr— fifr)

=l§!tk'k|2m'-m>(%-%:)fkf‘kf o @

where f =1 - f is the mean availability of the k’th single-particle orbital. We wish to emphasize

that the expression for A%, which is represented by a one-body operator A€, only depends on the

reduced one-particle density matrix as appearing through the mean occupancies f«.. Analogously,

the expression for the covariance, which is represented by a two-body operator A €A €', depends on

the reduced two-particle density matrix, as appearing through the product f4 f o C
We now observe that ‘

1
1 - cos 7 (e’ — €x)t

|ten | 2= | <k’|V]k>|2 )
(exr =€)

= | <k’|V]k>|? -%ﬂ- O(ex —€x) t (26)

when t >> A/ |ex - €. ‘_Thgfgforé, if we.follow the _erlutiOn'fdr a time inférVa}l At that is large in-
comparison with typical values of the single-particle times, the expressions for A% and Adg¢ are
proportional to At, and we may extract the transport coefficients as follows ) T
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Vo= AA“’ = 3 S IKN V> e - ) (€= €0) S
k'k
Ad’ 2 / ’ i :
Wee = — 7 =5 Bex - &) (Gx = €1) (i - €) fifie (2D

The discussion of whether it is possible to find values of Ar that are at the samie time large on the
single- partlcle scale and small on the macroscopic scale is postponed until spemﬁc application of the
method is made.
2.3 _Expressions in terms of basic transition rates
It is instructive to note that the expectation value _
<twetk> = [ten|* fiSur (28)

is the probability that a particle is promoted from the orbital k to the orbital k’ during the time
interval considered. Therefore, the corresponding mean transition rate is

, 1 . . : , - S ,
k'’ —k) = Ay Stetin> = volk” < k) frfx - (29)
where |
’ — ltk'k |2 _ 21I’ IR/ . )
vo(k’ < k)=—At_ = — |<k V 6(e,,/-e,,) (30)

is the microscopic transition rate between the orbitals k and k’; it is symmetric in k and k’.
We also note that the total rate of single-particle transitions induced by the perturbation V
is given by

N, = - <ii>= D u(k’ —k)
A 'k '

=zyo(k'~k)fkf‘kl | S | (31)

as one would intuitively expect. . .

The above expressions for the transport coefficients can then be derived in a different, more
intuitive, manner as follows. When a particle makes a transition from the orbital k to the orbital k’
the smgle-partlcle observables € changes by the amount %) - €, where the first term is the gam‘
and the second is the loss. The total rate of change in € is then given by

A€

ST D ) (G- @)

= kzlzvo(k' = k) (€r - €1) fifr

=kIEk”o(k,Hk)((€k'°(gk)fk - ' (32)

The blocking factors Sfi cancel out as they should on general grounds, as discussed above. Simi-
larly, a single transition changes the covariance between the two observables € and %’ by the
amount ( €y - €:) (€6i- - ‘&k) so that the total rate of changes becomes

Ao
= Dk k) (Gk - €1 (6 - 6))
k'k
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These latter relations show that as soon as the microscopic transition rates v,(k’ < k) are known,
by whatever means, it is straightforward to express the transport coefficients. Indeed, the above
relations are quite intuitive and, to the extent that one dares rely on intuition, our formal derivation
is unnecessary : .

3. TRANSFER-INDUCED TRANSPORT

We now consider the case of special relevance to damped nuclear reactions where the many-
body system has a binary character. We shall ‘thus assume that during the time interval dr the
effective one-body hamiltonian separates into two parts

H, = Hy + Hy _ (1)
where '

Ay =Xal ¢ q
i

Hy =2 bf ¢; by . )

are the eﬁ”ectxve one-body hamiltonians for the two binary parts 4 and B. We adopt a notation
where the single-particle “orbitals in A are labeled by the mdex i and those in B by the index j.
The corresponding creation and annihilation operators are g; ,a, and bf Wbj, respectxvely We shall
often refer to the -systems. 4 and B as nucleides. -

As in the general treatment, it is assumed that the reduced one-body densrty matrix is dlag-
onal in the given single-particle basis. Thus, Py = P + p§Y and

=0y fl

<J |P§1)|J>_5jj f7 (3)

where f{ is the occupanon probability for the smgle-partncle orbital i in A and B i is the smular_
quantity for the orbital j in B. Furthermore, it is assumed that there are no specific correlations
between a nucleon situated in 4 and one situated in B. Then it will be possible to express the terms -
containing the reduced two-body density matrix pY solely in terms of p§" and p§”. We note that
this present assumption is weaker than the one made in the general case, since it does not put any
restrictions on the correlations between nucleons belonging to the same nucleide.

The two systems 4 and B are assumed to be coupled by the perturbation v, Wthh\
represents the transfer of single nucleons between the two parts, )

V= Z(bf<J|V|z>a,+a,f<z|V|J>b)—V+V+ _ | @

Here the ﬁrst part, V-, transfers nucleons from 4 to B while the second’ part V+ =( V‘)’ transfers ‘
nucleons from B to 4. The effective operator ¢ is then of a similar form,-

t = E(b}‘tﬁag +a,~ft,~jbj) =t +t (5)
ij : . 4
The basic transition rates are given by

. . 1
w(j <i) = At<t tji> vo(J H’)f

Wi = j) =+ o il > =voli = ) J1 7 T (8
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where the microscopic transition rate is

vo(J o-—»i)=ll(i¢-»j)=-———|tu|2 | @)
] i (] At ‘ _ o . ) »
We note in passing that the total rite of transfer from 4 to B is given by
| Y . , . 7 »
N = =<i®i™>=Fuj <i) = Zu,(i = j) A} ®)
‘ ij ij
and the total rate of transfer from B to A is
1 s :
Nt = < 1> =i ~j) = zu,,(; «»,)f /, o )
ij .
3.1 General expressions

We shall focus our interest on one-body observables of the form

.Sj = Eair d,' a;
" N

g‘a=-zb,t B b - o (10)

Standard examples of such -observables are
1) the nucleon numbers (also denoted by 4 and B) for the two nucleldes represented by

A —za, a;
B =§bfb,- | | | (11)

(thus of; =1, &; = 0and 93, =0, #; =1)and
2) the momenta PA and PB of the two nuclerdes represented by

PA = Eairpi a;
i

j .

where P, = <i |P|z > and P; = <j |P| Jj> are the momenta associated with the single-particle
orbitals. For such observables we readily find

= izyo(’ =)y (fF -1
J)
Va=vl < j)B: (fF-1D
ij
2Dy = Fyvoi = j) i o (fAFF + FAFD
ij

2Dgq = Zvo(i —~j) B; B (ff} + FArP
ij
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2D ga =~ Zvoli =) 4, B S} + TSP _, (13)
1 . .
for the various types of transport coefficient.

Inclusion of the dissipated energy - ,
~ Often it is also of interest to study the evolution of the intrinsic, microscopic, excitation '

energies in the two nucleides (the heat). It is possible to include these observables in the formalism,
even though the energy of each nucleide is represented by a many-body hamiltonian. This is so
because the dissipated energy is produced by a succession of smgle-partlcle excitations generated by
the nucleon transfer process. :

The intrinsic excitation energy assoc1ated with a one-pamcle excxtatlon al { > in 4 is
given by g = ¢ ~¢€4. Here e, is a suitable reference energy, later to be identified with the Fermi .
energy in A. Similarly, the excitation energy associated with the one-particle excitation br |*>in
Bisgqg 1) = €5~ €5 Furthermore, the excitation energy associated with a one-hole excrtatxon a;-|">
in 4 is q, =€q-€ =~ q, and the excitation energy associated with a one-hole excitation bj | >
inBisq; =eg ~¢; =

Thus, each . action’ of the transfer operator t produces a one-hole-one-pamcle exciton
b’a, |=> with an assoc1ated excitation. energy of w;.; = ¢; + g q - q;. = Likewise, each
action of the conjugate £+ produces a_one-particle-one-hole excxt,on‘ ab | > w1th an associated
excitation energy of =j =gy +4; = ¢ -q; = -wj-;. We note that 1f a given transitioni — j»
generates. a positive excnatlon energy, w;~; > 0, then the reverse transition j — i reduces the exci-
tation energy of the system, as one would expect.

It now follows that the amount of heat, i.e., intrinsic rmcroscoprc excrtatron, in the nuclelde
A can be approximately represented by the one-body. operator :

0, =Jalqa , A ' (14)
and the neat inA B ean be similarly approxirnately represented by
0= Eb S o (19)

Most often, only the total dxssrpated energy Q o4 + QB is of mterest For this' observ-
able we ﬁnd the approximate drift coefﬁcxent ‘ B

VQ + VQ, z"o(' A J)(Q. —qj)(fj _fl:‘) .

Euo(l H.l)wi‘-j (fj IA) L ' . ' . (16)

It is 1mportant to reahze that the representation‘of the dissipated energy by a one-body
operator is only approximate. In practice the Fermi energies ¢, and ¢g_depend on the nuclear parti-
cle numbers 4 and B and, more importantly, the nuclear velocities U4 and U® (which generally
enter in the calculatron of the exciton enérgy, as demonstrated in Sectlon 3.3) depend on the nuclear
momenta P4 and P2. This feature introduces non-linearities in Q which invalidates its treatment
on an equal footing with the basic one-body observables C. It can be shown that the above expres-
sion (16) still gives a good approximation to the mean rate -of energy dissipation but the analogous
calculation of the diffusion coefficients involving @ would be substantially in error. Therefore, when
these quantities are needed one had. better invoke the fact that Q is related to the macroscopic ham-
iltonian by @ = E, - .#(C), where E, .is the initial macroscoplc energy, so that :

<> = E—<.1t’> S . - (17

and
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Go = <H><E>- <HE>

vog = <H> - <H>? | )

These expressions can readily be evaluated by using the mean values and covariances involving only
the basic variables C. It is clear that other observables expressible in terms of C can be treated in
a similar fashion. '

3.2 The microscopic transition rate

The key quantity in the expressions for the transport coefficients is »,(i < j), the micros-
copic rate of transition between the single-particle orbitals i and j. The proper calculation of this.
quantity is a difficult task that has not been accomplished yet. It involves the conceptual problem of
how to approximate the combined many-body system as a binary structure and so far no general
method has been devised to do this. It is clear ahead of time that v, will depend delicately on the
details of the interaction zone between the two nucleides — how close the nuclei are and how wide -
their interface is. To proceed we therefore seek guidance in the semiclassical description of nuclei.
Thus, the single-particle orbitals are identified with unit cells in phase space, the orbital i being
associated with the position-momentum point (7;,7;) and analogously the orbital j with the point
(7;,P;). Furthermore, we imagine that the two systems have a planar interface of area o at:which
nucleons can be transferred in a quasi-free manner. Thus, nucleons located at the interface, the
window, can change their allegiance, from being part of 4 to being part of B or vice versa. This
picture yields the following form of the micro transition rate: '

V; ' n . . .
vo(i = j) = h35('_"i_ - 7;)0(p; - p;)o(F; - ) 'I'i_z“"l‘ : S . (19)

Here # is the unit vector normal to the plane of interface. The é-functions express the demand of
quasi-free transfer at the window. The appearance of the velocity factor follows on dimensional
grounds, and the fact that only its normal component enters is due to the assumed invariance with
respect to translations along the plane of interface. The fact that it must appear as the absolute
value follows from the demand of microscopic reversibility: the microscopic transition rate from i to
j is the same as from j to i at the microscopic level; cf. the definition of »,(i < j). Finally, the
numerical factor of one-half follows by demanding correspondence with a classical calculation of the
rate of particles crossing the window. The above specific ansatz for v, is still the subject of some
debate among practitioners in the field, and it is obvious that a more fundamental derivation of v, is
highly desirable. Meanwhile, however, we shall adopt the above form in our further developments.
We expect that it provides a physically reasonable first approximation.

Having obtained a specific expression for the micro transition rate, we can proceed to evalu-
ate the transport coefficients. In the semiclassical picture the sum over states is an integral over
phase space so we have

< drdp, ( dFdp;
2voli = j)... =f 3 . f ;‘3 Loy, (i = ).
ij
=g _E‘;: J__LV ’zf‘ _ . . (20)

The integral over (7;,p;) eliminates the first two &-functions in »,(i — j). The. integral over the
normal component of 7; eliminates the third d-function, while the integral over the remaining com-
ponents of 7;, those parallel to the interface, yield the window area o. Thus only the integral over
the common momentum J is left. In order to carry out this integral the dependence of the occupa-
tion probabilities £ and f2 on the single-particle momentum j must be specified.
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33 The occupation probabilities

At the outset, we have made the basic assumption that the microscopic relaxatlon is fast on
the macroscopic time scale. Therefore, it is consistent to assume that, within each nuclexde, the
MmiCroscopic degrees of freedom are in statistical equ111br1um ‘The smgle-partlcle occupatlon proba-
bilities are then of the Fermi-Dirac form,

S =11+ el Tl

f2= [1+ ea)/’tv]-l S R @y

Here 7, and 75 are the two nuclear temperatures charactenzmg the degree. of excitation. The .

respective Fermi energies are denoted by ¢4 and e5. Finally, the nucleon considered has the energy

€&’ with respect to the nucleide 4 and the energy ¢, with respect to the nucleide B. These two ener-

gies are generally not equal since 4.and B may be in relative motion. Indeed, if the nucleon (m an

arbitrary inertial frame) has the momentum 7, its momenta relative to A and Bare )
;ﬁg' =p- .’_"UA = Do T L;'U

Py =P - mUp =P, _%{} S Lo (22)

where U = Uy - UB is the velocity of A4 relative to B, and p, = %(ﬁ, + py) is the momentum of
the nucleon in the mid-velocity frame. The corresponding relative kinetic energies are then :

€ =~ m =€o'EU'Po
2
Ps 1~ .

Aef.b='2_’;>=eo"EU’Po o (23)
where ¢, = %(fa +¢) = go + —:;—mU2 is the mean relative energy. Introducing the mean Fermi
energy ep = —;—(eA + €p) and the difference F = ep - ¢4, we then find for the arguments in the
exponents I S S '

1 . mz F "
R i --2—U)2-(6r ) TGt %
- | P m = F : : )
€ — € =?’;(Pa +7U)2"(5F +?)=fa“fr“% (24)

Here, in accordance with the discussion in Section 3.2, we have introduced the exciton enérgy

W= wgep = (¢ - €q) = (& —eg) = F-U-p, (25)
This quantity is the amount of excitation generated when the nucleon considered is transferred from
B to0 A; if it is transferred from 4 to B the associated excitation energy is wg-q4 = — w.

Since the occupancies f 4 and f? can thus be expressed in terms of the macroscopic quanti-
ties F and U (and 7, and 73), the integration over the nucleon momentum 7 leads to expressions
for the transport coefficients depending on these quantities. In general the integrals must be per-
formed numerically. While this is no essential inhibition on actual applications, it does make the
results less transparent. It is therefore fortunate that at the moderately low bombarding energies of
present relevance it is possible to achieve simple analytical approximations to the transport
coefficients.
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3.4 Low-energy idealization
In damped nuclear reactions the relative nuclear velocity is fairly small in comparison with
the Fermi velocity, U << V. (Typlcally -mU =~ a few MeV, while the Fermi kinetic energy -

Tr = 37 MeV.) Furthermore, the quantity F defined as the difference in Fermi levels, is equal to
the difference in the one-nucleon separation energies and hence fairly small, typlcally one MeV.
Therefore, also the exciton energy can be regarded as small (|o| = LUPF =

(-—U2 Tr)'/? = 8 MeV). Finally, the temperatures acquired by the nucleides remain relatively

small typically growing to a few MeV in the course of the reactxon It thus follows that it is of
interest to make the low-energy idealization where

%mU ;F’TA"TB’lw| << TF C ’ , ) t (26)

In this limit the two Fermi-Dirac gases are nearly degenerate and transfers. can only occur between
orbitals near the Fermi surface.

In the following we shall for simplicity assume that the two systems A4 and B have the same
temperature 7. This approximation suffices to obtain uscful expressions for the transport coefficients.
A discussion of the temperature difference A7 = r4 - 7 has been made in Reference 9

With the above idealizations it is possible to show that

FA78 = (@) 8(e - ¢F)
SATE =u(-w) be-ep) S o (27)
where the iota function is given by .
wew/r (ﬂ - _w)
T

Y =~

1= oI = 0) ‘_ - (28)

w.
1-2 (

4 |e

L;(w) =
0 (2=
T

The above result demonstrates that the broducts' fAfB and f4fB are aharply peaked at the Fermi
surface. By subtracting and adding we readily find

fB-fA=frfE-faff =  wi(e -e;)
fAfE +rAf8 z«»coth(—) 8(e - €F) o ( . (29)

_ Because of the presence of the 6-functxons in the energy of the transferred nucleon, the
momentum integral in the transport coefficients reduces to an integral over the momentum direction
for orbitals in the Fermi surface. Therefore, the transport coefficients can be written in the form

—af d(p)w&(e—ep) = N <Aw>f
D = [ B I ) st/(5) £ coth (32 e - ep)
=N <% coth (i) oA A’ > (30)

Here <> denotes an average over orbitals in the Fermi surface; this specific type of average con-
tains an extra angular weight factor |Q it| and is referred to as a flux avcrage The quantity N’ is
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the form factor common to all the transport coefficients and governs the overall transport rate. It
depends delicately on the details of the interaction zone and can presently only be estimated by
semi-classical means. If the transfers are schematically assumed to occur over a uniform window of
cross section @, the form factor is. given by N’ = pVa/2TF where p is the nuclear density and
v = 2Vf the mean nucleon speed. Since it is the same form factor that enters in all the different

transport coefficients, many features of the model are relatively insensitive to the expected inaccura- -
cies .of the simple expressions adopted for N’. Naturally, in applications-to nuclei, one must con-
sider two form factors, Nj and N7%, one for neutrons and one for protons. Detailed discussions of -
the form factor are given in References DDand - . L : -

~ In the above flux averages, the observable < (or %) generally depends on the-momentum .
p of the transferring nucleon (for example, for o/ = P, we have (p) = p) and the exciton
energy is w = F - U + p. Therefore, the flux average in the diffusion coefficient is rather compli-
cated and its exact evaluation must generally be made numerically. However, in order: to have a
fairly simple theory, we shall assume that the flux average factorizes so that

@

=N <
Dyg =N >

coth (—2“’7)>F <dsd'>p -

=Nt <dd'> ‘ o L (31

Here we have introduced the socalled effective temperature v*, which is the average energy stored
in the elementary transfer modes when the intrinsic system has the temperature 7. It ‘measures the -
effective energy interval around the Fermi surface where transfers can freely occur. Introducing
also the effective exciton energy w,s, by wl; = <w’>p, we further approximate 7* as follows

* =<2 “y)>
T 200th(21_) F

~ DL coth (L | ' - 3
2 2r

The exhibition of the quantity r* in the expression for the diffusion coefficient is exact in certain
cases, for example, when & represents the nucleon number or when we are in the classical regime
where |w| << 7, and in many other cases it is a good approximation. However, in the quantal
regime where |w| >> 7 the approximation may occasionally be poor, and if high precision is called
for the flux averages should be evaluated numerically, which poses no great practical difficulties.
This may be particularly important if quantities like the correlation between nucleon number and
momentum are studied. With these words of caution we shall henceforth make the factorization
approximation.

Simple example: Nucleon number and momentum

Consider the observables 4, the number of nucleons in the nucleide 4, and ﬁA, its overall
linear momentum. For the drift coefficients we find

Vy=N<w>p =N(F-U-<p>F) =NF
Vp, = N'<wp>p = N'(F<p>p - U- <pp>r) =-NU- <pp>r (33)
since <p >f vanishes by symmetry. The diffusion coefficients are given by

DAA = N'r*

Dpp, =N't* <pp>f
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Dip, =N't* <p>y =0 o (39
Furthermore, the approximate drift coefﬁc:ent for the dissipated energy Q is

= N’<w2>p = N’w,ff : _ ' : (35)

The quantity F is the generalized driving force for the observable A4, and ~U is the general-

ized driving force for the observable PA, they can be obtained by differentiation of the macroscopic

hamiltonian with respect to -4 resp. —PA The associated generalized mobility coefficients are N’

resp. N'<pp >p. We note that the total energy dissipation rate, 0 = <Vp>, is equal to the gen-
eralized scalar product between the generalized driving forces and the drift coefficients

O =N'<P>p = N(F + 0 <pp>p-0) =FV, -0 - v, (36)
We wish to note that the tensor <pp > is anisotropic
P . C
<pp >p = T’(l + AR) . - , (37 -
due to the extra weight on the normal component 7 - # in the definition of the flux average. This
feature enhances the momentum dissipation (the fnctlon) in the normal direction by a factor of two
relative to the directions parallel to the interface.
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PART II |
~ ANGULAR MOMENTUM IN THE DISPHERE*

This part idealizes the reacting nuclear system as a disphere and focuses on: the dynamlcs of
the angular-momentum-bearing degrees of freedom. They are the individual spins S4 and S% of the
two spheres and their relative orbital angular, momentum L Of course, when no external torques
are acting, thetotal angular momentum J = S + 58 + Lisa constant of motron

1. NORMAL MODES o .
The macroscopic hamiltonian for- the angular-momentum variables in the disphere is given
g2 §B 2 N . L
L
M = et et S W

25, 285 25

where £, and. £y are the individual mioments of inertia of the two spheres and Sy is the relative

moment of mertra For a glven value'of the total angular momeéntum J the lowest mode of n})tron
F =
- J

j A

o

of the drsphere is a rlgrd rotauon w1th each of - the three angular momenta given by S§F =

where we have introduced” the ‘label ~F:= A,B,L and the total moment: of inertia -

S, = £, + Fp + Fr. Relative to this yrast mode of motion intrinsic rotational excitations are
possrble These excitations carry no total angular momentum and can be classified in two groups
according to whether the two spheres turn in the same or in the opposite sense.

In order to bring the hamiltonian on normal form we introduce the following spm variables,

- Is

3’=S 7. 7-—5,,R+s_|_
a- _ jB oA JA 2B . .
S:—A’JSS Jss S . S 2

where § = SA + 58 is the total spln camed by the two mdrvrdual spheres, .fs = f, + JB is
the assoclated moment of inertia, 5, =5 - RR is the component of § on the dinuclear axis
R = RA R,, joining the two centers, and §, = § - §, is the projection of 5 onto the plane per-
Qpndrcular to R. Furthermore, we introduce the component of J_along the dinuclear axis,
= J - RR, and its projection onto the perpendicular plane, I = J - K. With these definitions, it
is now possible to rewrite the hamiltonian as follows
I 2 an S, 0 -2 S, S -2

Hrot 28, 285 285 IR J'+2JAJBS

Jz jR K2+ Jo -2 + jS a=-2

X AREY A 5. 5.+t 35.5, 5
Here the first term repreSents the yrast energy associated with a rigid rotation while the additional
terms arise from the six normal modes of rotational excitation in the disphere. The first term is
associated with the “trltmg” mode arising when J has a component along the dinuclear axis R, the
two spheres then spin in thé same sense around R. The next term is the energy of the two “‘wrig-
gling”” modes, where the spheres rotate in the same sense around an axis perpendicular to R. These
three are the positive modes.- The last term arises from the three negative modes: the “twisting”
mode, where the two spheres rotate oppositely around R, and the two *‘bending” modes, where the

3)

*Based on work done in collaboration with Thomas Dgssing.
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spheres turn oppositely around an axis perpendicular to R. A discussion of the normal modes in the
dinucleus was first given by Nix and Swiatecki® and more recently by Moretto and Schmitt®.

2. COORDINATE SYSTEMS-

For the drscussxon of the dynarmcs of a nuclear reaction it is useful to mtroduce a body-
aligned coordinate system xyz by # = R, y =[ 2'=p Xz Itis aligned with respect to the
instantaneous directions of the dinuclear axis R and the orbital angular momentum L. We shall
often refer to this system as the fluctuating coordinate system, since its orientation follows the
fluctuating direction of the orbital angular momentum L.

-In order to make contact v_vnth the discussion by Moretto7) we introduce another coordinate
system x'y’z’ defined by 2’ =R, p’ =1, ' =y’ X 2’ It differs from the standard body-
ahgned system xyz in that the y’-axis is directed along I rather than L. Thus, in order to deter-
mine the orientation of this coordinate system it is necessary to know the direction of the total angu-
lar momentum J.

Both of the above coordinate systems are defined in terms of the internal dynamrcalﬁstate of
the system and .are thus not'amenable to determination in a scattering experiment. It is therefore
necessary to also introduce a coordinate system defined with reference to some external agency. So
we introduce the coordinate system XYZ defined by Z =R, ¥ =R X 1, X = ¥ X Z where t is
an externally given direction, later to be identified with the beam direction. S

Simple illustrations

2.1 One particle coupled to a heat bath _ v { R ,

We consider a system consisting of a particle with mass m coupled to a residual system with
mass M. o ’
2.1a  One dimension

Let us first consider the case of one translational degree of freedom only. Let the: particle
momentum be p and that of the residual system be P. Since the system is assumed to be isolated,
the total momentum P, = p + P 1s a constant of motion. The hanultoman can then be brought on
normal form as follows

2 R ~p)2
=2 P _p, (Fo-p)

2m - 2M 2m 2M
- 2M, 2
PZ ' )
=2 4+ ~ ‘ (1)
2M, 2u : :

We have here introduced the total mass M, = m + M, the reduced mass
= 1/(1/m .+ 1/M) = mM /M, and the “‘intrinsic’” momentum r = p - _A';— P,. The first term
o .
in the above expression is the kinetic energy associated with the overall rigid translational motion of
the system. The second term is the addmonal kinetic energy ansrng from the relatrve motion of m
and M. '
~ Let us now assume that the coupling between m and the residual system is of thermal char-
acter. The statistical equilibrium of the system is then described in terms of the partition function
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-5 N )
Z = fdedpe'"/’—fdP fd':re °
where 7 is the temperature. It then follows that
<r>=0, <w>=uypr _ _ o . (3)
so that the particle momentum is characterized by '
m m
<p> M, P, + = M, P,
29 - m + > = (- 2 4o
<p*> -<(M0Po ) }(MoPo) [
o} = <p¥> - <p>? = <> =yr’ . A . 4
Likewise, for the residual system '
M M
>=<—P,-a>=""1P,
<P M, T .1r , M,,»Po
<P¥> = <( M ,,-1r)2> + ur
M,
op = <P¥> - <P>?= <> =pr (5)
Finally, the covariance between p and P is
2 g,P = <pP>- <p><P>
m M,
= > - — ——
(M,, 0 =M MOP M, o
=—<1l'2>=-#7 . (6)

2. ib Two dimensions

Let us next consider the case of two translational degrees of freedom. We introduce a coor-
dinate System XY aligned so that X = P,, i.e., the X-axis is along the (conserved) total momentum
P =p + P = (P,;0).  The hamiltonian is then

-_H=L+ P _pitpt (B Px)2+(-PY)2

2m . 2M T 2m 2M
P2 1,1 1., m,a.1,1 , 1.
= + —(= + —(— + —)p#
M, T2 T ;e Gt
PZ 2+ 2 _
- [ +1"x Ty 7
2M, 2u .

where 7y = py - Ilm—Pa and 7y = py. Again, the first term corresponds to a rigid translation of
o Y
the entire system. The last terms arise from the relative motion either along P, or perpendicular to

B,.
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In thermal equilibrium we have
<mxy> = <wy> = 0

<r}>=<wi>=pr , <mxmy>=0 » o (8)
Therefore, for the particle m, ' ’

m _ m
M, ° M,

<px>=<

P,

<py> = <1ry> =0

0B = <pE>- <px>? = <( L T ( l= <> =ur
0 0
o} = <pp> - <py>r=<np> =ur = ';{M'r '
0
ofy = <pxpr> - <Px><PY> <( P +ax)ay>=0 ' )
Similarly, for the residual system M ,
M M
<Px> = <"AZP0 -Tx> = Ma Po
<Py>=<-my> =0
o= =ur, ¥ = (10)
For the covariances between m and M we find » _
m_ M '
otk = P +1rx)>—MoP MP ——<1rx>—-;.ur
aﬁ =—<1r,2r> = - ur
o8 = off =0 . an

Internal reference Sframe

The above results are w1th reference to an external reference frame ahgned with the con-
served total momentum P It is also of interest to introduce an internal reference system that is
aligned with the momentum of the residual system P, which is a fluctuating quantity. Thus intro-
duce the internal coordinate system xy so that the x-axis is aligned with P. The xy -system can be
obtained from the XY-system by rotatmg the angle )\ determined by

P . '
tan A = — (12)

Py
Since
Pr=(Mp _r)?+nd

M, .°
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M . M, wx M, , 7%+
1-2 — —)f ——
g, P25 5o+ (G =) (13)
we have
. ~Mo b M, 2 TxTy
sm>\~M P, -2(M) P2
M, , w}
cosA~1——(M)2P}; (14)

‘We have here assumed that the temperature is relatively small, + << P2/2M,, so that the typical
values of the intrinsic momentum 7 are small in companson with P,. We thus have

=Xcos\+ Ysin\

}'1=X'sin)\+f’cos>\ - (15)

We can then derive the momentum dlstnbutxon in the internal frame. For the x-component
of the particle momentum we find :

<py> = <px cos A + py sin A>

— g m 1, M, , ¥ M, =y Tx Ty
~ <(-2-P, =2y =L ) =Y)>
M, 2" M° P M P, P,
~mp 1 mM, <ri> M, <ri>
"M °" 2 M P, M P,
1 mM, M, off
=<py>-(= ‘
>3 5t 30 3 (16)
<plX> = <pi cos? X\ + 2pxpy sin A cos X\ + p} sin? A\>
M, M,
~ g m 2 0
= <(— -(— —)>
(3P +m01 - (520 25 o )
m m m
A 2> - (—ﬁ)2<r,%> -2 <rd>
pi> - (3 - 297) off an
off = <px2> = <Px >2
~ m.2 m m.» m =
=~ -((—=)2-2— BUAY IR U =
o - (5} - 250008 + (397 + 23008 = ok (18)
Thus the dispersion in the x-direction is only affected to second order in the temperature.
For the y-component we have
<py,> = <-pxysinX +pycosA>= -+ =90 (19)

as is to be expected on symmetry grounds. Thus
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off = <p}> = <pjsin? A - 2pxpy sin A cos A + p# cos? \>

M, | <z}> m M, <=zi>
R (P (G~ —2 5 Pe(-—0) —5— + <>
0 o (4 4
M, _ mM, _
= (Ve == @

This result shows that in the internal frame the variance in the direction perpendicular to P is
enhanced by the factor (M,/M)2 In consequence the distribution of the particle momentum 7 is
no longer isotropic. -

For the covariance between p, and p, we find ¢/ = 0, as expected on symmetry grounds.

The corresponding quantities for the residual system can be obtained by proceeding in a
similar manner. We find for the x -components

<P,> = <Py cos A\ + Py sin \>

~Mp 1 M, <z> M, <zj>
M,"° 2 M P, M P,
M PP . ' .
—<PX>+—;-A;‘;’;”=<PX>+%2T 1)
. o o

<P2> = (T'I"——P,,)2 + <mi> - <np> + 2<ni>
(4

= <Pi> + off (22)

off = <P?> - <P, > =,fF (23)

not surprisingly in view of the result for p,. For the y-components we find <P,> =0, as dictated
by symmetry, and

oy = <P}> = <(‘]3{—P., — ) sin? A = 2 (P, —my) wp sin A cos A + 7F cos? A>

0 Mo
M M, ' <ri> M M, <=zi>
(P (—)P—— -2 —P,(- =) —— + <xi> = (24
M, ' M P2 M, ° M’ P, Y )

as is to be expected, since P - » = 0 according to the definition of the internal frame.
' Finally, the correlation between m and M, in the internal system, is characterized by

off = <p,P,> - <p,><P,>

_mM ., 2 2 mM ., 2
= Moz Po - <1rx> - <1|’y> - Moz Po + <1I’y>
= ok (295)
and
off = <(-px sin X\ + py cos \)(Px cos A + Py sin\)> = -+ =0

LX)
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PP =0
alf =0 (26)

as it should be since P, =0.

2.2 Two particles coupled to a heat bath

We now consider two partlcles a and b, with masses m, and m,, coupled to a residual sys-
tem with mass M. .

2.2# One dimension

Let us first restrict our considerations to the one-dimensional case. The total mass is

M, =m, + my + M and the total momentum P, = p, + p, + P is a constant of motion. Our
task is now to bring the hamiltonian

2 2 2

Pa Db P

H= "=+ =+ » = @

2m, 2m, 2M S ‘ : ' (27)

on normal form. For this we first transform from @ and b to positive and negatxve intrinsic modes

as follows:

my=mg+my , py =p;, tpp

L —m (PP o L
Mo e s P (o) | . (28)

The inverse relations are

— Ma +
Pa my P+ pP-

my, : o
Po = P+ P- , (29)
In terms of these new variables the harmltoman reads
pl p} 4 Po-p ot
H =
2m_ + 2m+ 2M _ : (30)

Thus the negative modes decouple entirely from the residual system; this mode is the relative motion
of the two particles @ and b. The positive mode has the two particles moving with the same velo-
city. Their coupling to the residual system can be treated as in the case of a single pamclc with
mass m 4 and momentum p . Thus we arrive at the normal form .
P}? 7l 2
t o— . 31
2M, . 2u4 2u_ : . (31)

,where p.=m_and uy =1/(1/my4 + 1/M) and
T =p_

Zrp | - o B (32)

In thermal equilibrium we have

<r>=<r;>=0
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<1ri> = 4T , <r?> = mT

<r4em.> =0 ' (33)

Therefore, for the individual particle momenta p, and p,, we find
<py> =2 tp 4>+ < >="0p
Pa ma M, T+ > M, o
my my my
<pp> = -<r.> = P,
Po = = Sy M, M, 5o | (34)
and '
m, )
<pl> = <( + 7)>
a Mo
= M <ri> + <>
my, my 2
<pp> =< P, + — w4 -m)>
m m
= (—-P,)? + (—)? <ri> + <>
Mo m4
m,
<papp> = (7P, + — mp + 7"-)( + — Ty -m)>
MO + o ma
mg 1y 2 mgmy, 2 2 '
= P/ + <ri> - <wmi> 35
M2 ° mi + . (3%5)
so that
M T
2 <xl> = (m?
<1I'+> + > (m,, Mo mb) m + "
= () <xd> + <nl> = (mf T my) ———
m, i Mo m, + ny
my,my, M
= 22 <> <al>= A S S
mi 3 w2 (mymy M, mgmy) pe———
_ mgmy,
M, T ‘ : . (36)

2.2b Two dimensions

By exploiting the results for the case of one particle, it is easy to extend the discussion of
two particles to two dimensions. As we have seen, the negative mode is decoupled entlrely It has
mean momentum zero and isotropic variances given by

Oxx = Oyy = m_t (37
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The variances of the positive modes are also isotropic, in the external frame, and are given by
M (38
-, T

M, : )

as follows from the discussion of one particle in two dimensions. Thus, the covariances for the indi-
vidual particle momenta are

o = ot =

.

mg

aa’ o dd 2t mm (g2 . .
ok =ovy = g + oxx = (m + mymy) ———
X =oyy (m+) XX XX " M, o)
my o M T
bh — _bb 24+ L2
oxx =oyy =(—) oxx taoxx =(m + mymy) ——————
Xx = Oyy m.,.) XX = (mg M, )
m,m .
ab — ab _ @ 44 .
oxx = oyy = ——5— oxx —oxx = (mymy - mymy) T
my o mg T my
mgmy 7 '
= T 39
Mav S _ . (39)
In the internal frame we have
ok = ot
' M, :
++ — (Mo 13 4+
ayy _(_A-{_) oyy ‘ (40)

while the negative modes are unaffected. Therefore, the above formulas also hold for the x-
components while the y-components become

.
= S )

a

M .

W = g )

'a

M, oty m, my, o -
Oy = (Mamy S = mgmy) e = =T (41)
a

We note that in going from the external to the internal representation the covariance between the y-
components actually changes from negative to positive.

3. THERMAL EQUILIBRIUM

Assume that the rotational modes are weakly coupled to the remainder of the system, which
is considered as a heat reservoir with the temperature . When 7 << J%/2 %, the six normal rota-
tional modes are approximately harmonic. Therefore, the ensuing thermal equilibrium distribution
is characterized by

<F>=<§>=0

JS Jo
SR

<K?®> = T
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Is &
<(F #)>=<F j)>=—"R,
g,
- - . £S5
<SS 2> =<(§ P> =<(S2)> = ,_d."_” ’ (1)
- s .

with all covariances vanishing. (The x’y’z’ coordinate system is the one defined in Section 2.)
To first order in 7 the following results can be found. We first consider the y ‘-components,
which are the most complicated ones.

<K> _,_ IsS 1

<Uy>=<I>=<(J*-K)>=] -

2 ) JR 2J
Is S
<JE>=<I'>=<Jl-K¥>=J1- 22,
y ‘ A
0’}”,},'=0’” =<Iz>-<1>2= 0(1‘2) ' (2)
| Ss X I o
’ = - ’ = - )> = < = - T
<L,>=<I -S§,> <J(Jol+s,) 7, I>_jo"»",szj'
2 2 IR 2 Ir 2 2
<L2i>=<(I -8,)"> = <( I-5,)> = (=) <>+ <s5}2>
7, s,
FR. 2.2 IRIs Is Ir IR, 2
= { ———— - + = +
»( fo) J 7 )T s (-fo 7)° + J(r)
I £,
otk = <Ly2;>—<Ly:>2=—%r ©)]
Is Is Is , T
> = -+- > = - 9 N2 T
<S, <Jol Sy JoJ (JR) 27
 Fs Fs 53 - Is Ir
<Si>=< +5,)2> = 2. , +
B (jo I +s,) (Jo J) A T 5, T
Is £
oS = <S,2,>-<Sy/>2=—;o—kr ' 4)
"f’f{" = <SyLy> - <§y> <L,>
| —<(“631+ )(JRI )>
' { Jo Syl jo —syl
<js I+ ><jR I >
- 7, Sy 2 -5y
Is Ir Is Ir :
=7¢y"y'-<~‘yz’>=-—;a—f 5

The components along the other axes are simpler to treat,
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<L,>=<S5>=0

' ’ Is S
LL _ .8 — SL — o2~ — 2SR
axlxl = ﬂ'x/x/ = —o’x/xl = <sx/> = j T
o
Is £
SS — W = ST — 2 — YS8Ya o
Ozig = Oz = Ozipr = <K*> = JR T o o (6)

These results correspond to those derived in reference S and are also i'n:accorqance with the analysis
by Moretto”. We note that there is isotropy in the plane perpendicular to R, where the spin vari-

) Is Ir : X ) L . IsF .
ances are given by 5 7, while the variance in the R-direction is 5 1, i.e., larger by a
: - - R .

tactor of (-22) = ’
factorof (—=) = 2. .

~* The above results for the equilibrium distribution are given with reference to the coordinate

system x’y’z’ aligned with I. In order to express the results in terms of our standard system xyz,

" which is aligned with L, it is necessary to perform a small: rotation around the common z-axis.* This

task is analogous to the transformation from the intrinsic system xyz to the external one XYZ. The
2ol !

rotation angle ¢’ is given by sin {’ = -L,//L, where [, = <L> in x’y’z’.
‘For the mean values we find '

<SF> = <= SE sin¢’ + SF cos >
y y

o~ F 65’1;' 1 F O'XLII;I
~<Syl>+—Lo——-7<S"TI>_L;2— ‘ » @)
which gives ‘
Fr T ’ 1 <Ly> Fs Fr Fr ' :
> = - —_ 4 — -1 =
<L, JoJ J_gz] Lo(l P L ) 7 T JoJ (8)
as should be expected in an z-aligned system,
oSk <S,> otk
<§,>=<S,>+——-1 z A
’ UL T L L
R4 St X9 Is  Is F
4 Ry P R e
£, Sp 2 JS 2 Sr 5,
_ s _ IsSo 1
o ~Ir - J
s
<> =<L>+<§>=J-—=2ZL )
S J

We also note that the average y-components of § and J are smaller in the ‘L-aligned system than
the I-aligned one, aswould be expected. ‘ '

Since the rotation around the z-axis leaves the z-components unaffected we have
off=d5 , : _ (10)

Furthermore, as we found in' the transformation from xyz to XYZ (see Section 2:1b), we find here

*Alternatively and more directly, one may proceed as in Problem 3 and bring the rotational hamiltonian on normal
form in the L-aligned system.

4
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ofS = o5, | (11)
However, the xx -variance is affected. We find
F G F< G
oF6 = o, _ <S> 1. - oFL, <§,' > + <§, > oL, <S§y' > (12)
xXx x'x’ Lo XX X Lo . Lo XX Lo .
so that
o =6t . (1-1-14+1)=0 (13)
_ as should be the case since L, = 0. Likewise, 0 = ¢3¢ = 0 and
SIs Ig Is
oH = 0% =03 =Py - A (Ug""“f";}')f}:dg'-}:-
Is Is Is S, ,
= + + Y = 2 - —
(1 +2 5+ (-t = ) (== ) o (14)

We thus ﬁnd that the xx-variance is increased by the factor (Jo / #£r)? and hence emerges as equal
to the zz-variance. In other words, in gomg from the the I -ahgned system to the L-ahgned one, the
isotropy in the plane perpendicular to R is replaced by isotropy in the plane perpendicular to L.

In summary, the equlhbnum oovanances for the fragment spins SF,F = A,B are given by

Fr
% =15 Is

7, e Sahl g
ny'—[frfa j Jn]m
S =1 #r I J JAJn]mj' (15)
in the 1 -ahgned internal system and by
' £,
oF6 = o —_—
= [ Fr 6 A + erg F4 Il 7.+ 5,
0'}{;0 = [ Sfr g j F498] —_J T 7,
£,
ofS = [ Fr 6 A F455] m (16)

in the L-ahgned internal system. The symbol ¢z; is one when F =G and minus one otherwise. The
second terms arise from the isotropic negative modes (bending and twisting) while the first terms
arise from the positive modes (wriggling and tilting). We note that the x and z variances of the
positive modes interchange their sizes under the transformation between xyz and x’y‘z’.

4. TRANSPORT COEFFICIENTS

After having familiarized ourselves with the rotational modes of the disphere we turn to the
discussion of the dynamical aspects. First we need to obtain the relevant transport coefficients.

In order to obtain simple expressions for the transport coefficients we assume that the
transfers occur on a ‘“‘window’ plane perpendicular to the dinuclear axis R = R, - Rp, as illus-
trated in Fig. 1. The distances from the two nuclear centers to the window are denoted a and b,
respectively, and the position of the point of transfer in the window plane is given by the two-
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XBL 836-10224

Fig. 1. The idealization of the reaction system as a.disphere. The two spherical nuclides 4 and

‘B are separated by the vector R =.RA RR’ have the relatwe velocxty U= UA Ug,
and rotate with the angular velocities & = $4/.$, and &® = S8 / #p. The location of

a nucleon at the point of transfer is 7, = (cy,¢,, - @) relative to the center of 4 and
Fy = (cx,cy,b) relative to the center of B. e

dimensional vector ¢ = (c,,c,), choosing Z = R. The point ‘of transfer is then given by
Fa = (¢cx,¢y, —a) and 7, = (¢, c, b) relative to the centers of 4 and B, respectively. Further-
more, the corresponding local relative velocity U of the two systems is given by

U=U,-Up +a* X7, -2 X7, o ()
Let_us consider in some detail the drift coefficient for the spin of nucleus' 4. For the
observable S* we have of = F, X p, and therefore for the associated dnft coeﬂ'tcxent

=fdc' n’(c) <(F =U - P)Fy X Pa>r

=—de n'(c) 7y X <pp>p - U - ()
Here n'(c) is the local differential flux, i.e., the differential current Vper unit area, related to the
total diﬁ'erer21tial current by N’ = f n’(c)dé. Similarly, we introduce the local total flux
Pg
n(c) = — n’(c) related to the total current by N f n(c)dc. Assuming axial symmetry, all

- 4
odd terms in¢ average out to zero, s0 we find

-

P4 =-m [ n(e) (cecy - a) X (UG, 20)

=-m fdc" n(c) (aU, + 2¢,U,, -aUy, - 2¢,U;, c U, - ¢, Uy)
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= -m J-dc n(c) (@(UA-UP + wfa + wfb) + 2, (wfe, - wPc,) ,
-a(Uf - U‘-wya— 2b) - 20, (~wjle, + wle,)
Cx (sz Cx = “’zncx) - (‘Q;‘Cy + wfcy))

= -mN (au, + c2, (0 - wf), -au, + c2, (- P, c,z‘,; (o - ) 3
where '
i=<U>=(Uf-U?-uwfa -w,b , U“ UP + wfla + b , 0) (4)

is the average value of the relative drift velocity and

et = <c> =fn(c)¢:2 dc /fn(c) dé | )

is the average off-axis displacement of the point of transfer. For a uniform cylindrical window of
radius ¢, we have c2, = L cl.

"By proceeding in an analogous manner for the other transport coefficients it is possible to
show the following result. Any of the drift coefficients V", F = 4,B,L may be written as

PF = _ > MG . : - o (6)
G=A,B,L L '
and any of the dlﬁ'usmn coefficients may be written as
BF = MF s . g o
Here the generallzed mobility tensors MF G whnch in the present ‘case are identical to the friction
tensors, are given by

-

A?M—mN(a2T+c )

-

M = mN (BT + 2, D)
M = mN (abT - c2. 1)
M = _ mN aRT = i
MPBL = - mN bRT = M*™®
H™ = mN BT - B @)

with T = XX + yy, and T =T + 22. We note that conservation of the total angular momentum
J =84+ S + L ensures that the following relations hold,

A?F MFA MFB ‘ (9)

for F = A,B,L. Thésc relations are general and should be satisfied in any theory.

5. EQUATIONS OF MOTION

Once the transport coefficients are determined, the equations of motion for the mean values
and covariances can be written down, using the general equations [I-1(11)]. However, those
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equations are valid in an inertial frame of reference, while we wish to express the evolving distribu-
tion in a system aligned with the instantaneous, q.nd contmually changlng, directicn of the dinuclear
axis R = # and the orbital angular momentum L = 7, since it is in this system that the geometry,
and hence the transport coefficients, are simple. -

The effect of the orbital motion can be taken into account by performing a differential rota-
tion 98, (¢=wgrdt) at each instant in time. In order to take account of the dynamical change in L

SL,
it.is necessary to perform a finite (but supposedly small) rotation R,(A = - —) around R to

realign the y-axis with L. Since the change in L is stochastic, arising as it does from the statistical
transfer of nucleons between the two reaction partners, it is necessary to follow an appropriate
averaging procedure. It is not possible to enter into the details of this important aspect here and we
refer to Reference ” for a full discussion.

The ensuing equations for the temporal evolution of the mean values and covariances for the
angular momenta, as referred to the internal body-aligned coordinate system, are as follows,

. SF
$F = - S(MC S + - ofS MY/ S5 + T QML - L M
2 L L I

ofH = 2" MFH _ E(UFGMG” + MFC oSy ) $; - wr(ofH + o] ”)

Sy e IG _GH, g o2 FL L, S”
- =L Q" MM -3 M o) #6) - (2" MFE - 3 o FOMEL) #6) -
L G o G L,
SF sf
+ 27" L MU X . 1
T M » (1

g =21 MM - E(GFG M + MFS o3 176

ofH = 2. MFH - z(azaMG”r + MFS a,G,”)/JG + wg(cfF + oFH)
_axz =- 2(6£GMGH+MFG GH)/JG +“’R(°’xx "a'zH)

+ 5 5 a0 090,
L, <

= 2(‘72’;0 M + M7 oI + wr(a - o]

H

+ 3 o0 MPY TG 2

G L,

The terms containing wg are those arising from the orbital rotation; they continually mix the x and .

z components. The terms containing L, in the denominator arise from the transformation to the

fluctuating direction of L; they are derived under the standard assumption that the dispersions are

small in comparison with the mean values (which is reasonably well justified for not too small impact
parameters). The remaining terms are recognized as those given by the basic equations [I-1(11)].
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6. RELAXATION TIMES

The above dynamical equations employ 54 and S? as the basic variables describing the
state of rotation of the two nucleides. However as already noted earlier, it is more instructive to
consider the variables : '

St =8§4 + 58

- S S ' '
§T=—81.——=5§° _ \

7, I (N
which have the assoc1ated moments of inertia Sy = Sy + S5 and S = S, I/ F;. The
transformation between S$4,S? and S+ ,S~ is anti- -unitary (i.e., the associated jacobian is minus
unity). The mobility tensors in the new spin variables are

I = f2 = mNRYF = - 1

= mN [( JA+JB)T+CMI]
- Fqb - Fpa .. e - ' : '
- AT T BT F L
M mNR JA+.~’B T M 2)

It is now possible to show that the coupled equations of motion [II-5(1)] have a umque sta-
tionary solution, towards which any solution tends as ¢ — oo, given by

SR
s = T+ .
£
=
=g T | | | - 3)

It is an elementary exercise to verify that thcse values are in accordance with the previously found
thermal values cxpressed in terms of §4 and S8 , equations [II-3(16)].

When assessing the relevance of the lmutmg thermal distribution, it is essential to take
account of the relaxation times associated with the various rotational modes. In order to achieve an
understanding of these important quantities we restrict our considerations to a symmetric system
(A=B) with a fixed geometry (so that all the constants, including the form factor N, are time
independent).

The assumption of symmetry implies that M™" vanishes so that the equations involving S-
decouple. Furthermore, since M is isotropic in the symmetric case,” we need only consider the
component of S- along an arbxtrary dlrcctlon For the negatlve modes we then find the equation

M- -
-Gt Lyz) Sy (4)
for the mean value, which shows that the time scale for the relaxation of S~ is given by
5 5 .
t_ == = A (5)

M=  2mN c2.
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We also note that if initially §- =10, as in a standard collision experiment, then S' remains zero
throughout. For the associated covariance we find the equation

oy = M -2 —-—J'_ 0y (6)
so that the typical time scale for o™~ is
- s £ - . . :
(=) LA =i : : 6

a(0) M M

as one would expect.
The equations involving the positive spin modes are more compllcated and we shall only
summarize the results here. The characteristic relaxation time for o5 % and ay, is
,I++= JIZ‘ _ j+2= JA2=2(Cav¢)2t_ . (8)
: M r 2mNR mNR R
where ML = mNR% The axial variance o,t* does not receive contributions directly from the
nucleon transfer process, but only indirectly via the orbital rotation. For small times it grows as

o',';'+ M wWR 33 oo C ' 9

but becomes more complicated later on. When iy <1 /wR the main part of o5 7 relaxes with the
time scale

1 ‘ v -
ty, = ——— : : ‘
T a0} . . L o (10)

The relaxation times depend on the nuclear separation R and the average off-axis displace-

ment c¢;,.. The evolution of these quantities in the course of the reaction are displayed in Fig. 2.
. [Rather than ¢, is shown the neck radius c of the cylmdrlcal neck employed in the calculation; for
large neck radii they are related approximately by c¢2, = lc .] We note that throughout the reac-

tion, for all values of J (particularly the higher ones), the idealization ¢2, << R? is fairly well
justified: the worst situation arises near the turning point for the most central collisions where
c2.:R?* = 1:8. We therefore expect a fairly clear separation of the time scales for the positive and
negative spin modes.

Usually, the shortest relaxation time is ¢4 4, the one associated with ot and ayy+. These
variances express the degree of excitation of the two degenerate wriggling modes in the disphere.
The nucleon transfer process excites primarily these modes and they relax relatively quickly. Con-
trary to this, the tilting mode is only excited indirectly by the differential orbital rotation of the in-
plane wriggling mode. Consequently, a fairly long time is required for relaxation of this mode, typi-
cally longer than a rotation time. We draw attention to the fact that the tilting relaxation time is
inversely proportional to the square of the orbital frequency wg and not just to wg, as-one might
have expected. This is because the dominance of the transfer suppresses the influence of the orbital
rotation.

The negative modes represent opposite rotations of the two nuclei. For a symmetric system
it requires transfers off the dinuclear axis to excite these modes, as evidenced by the appearance of
c2,.. Since usually ¢2, << R? there is only time for partial relaxation of the negative modes during
a damped nuclear reaction. Therefore, the thermal-equilibrium values are of only limited utility and
a dynamical calculation is called for to predict the final distribution of the fragment spins.
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1400 MeV 65 Ho+165H9

20 T I [
S | J=440/ /400 300 200
a<
5T 1
©
o
Q.
[¢3]
(7p]
10} -

20

‘ Neék rodiué c (fm)
(6)]

(=440 ') 400

(o) . 5 X 10 : 15 o 20
Time t (10-225)

Fig. 2. The time evolution of the dinuclear separation R and the radius of the small cylindrical
- neck joining the two spheres, for various values of the total angular momentum J in the
reaction 1400 MeV 165Ho + '65Ho. :

7. ' DYNAMICAL EVOLUTION OF THE SPINS ALONG THE REACTION NORMAL

In this section we consider the components of the fragment spins SA and S2 in the direc-
tion perpendicular to the reaction plane, S;' and Sy”, respectively. In order to bring out the essential
features as simply as possible, we assume that the nuclear geometry is fixed, i.e., the form factor N
as well as @,b,R,coves F4, F5, Fr are all constant in time, as in the previous section. It is con-
venient to introduce a two-dimensional vector notation, so that the mean components are given by

— A B '
§—(<Sy>, <S§,>) (D
and the associated covariances are
AA _AB . :
[ Oyy Oy ] _ , ) ) 2)
g = B4 _BB ' ' .
Tyy Oy . : '

BA : :
where o)” = 0,," so that ¢ is symmetric.
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7.1 Dynamical equations o o
E - X LS R . - . A RN -, .

In the present discussion we ignore the small correction terms proportional to 1/L, in the

dynamical equations for the mean values. The temporal evolution of the above quantmes can then
be written as : o .

=d-S° K : S

oo : R - . * ne L ""- Te ‘e
g =2D-g°K-K'g | | €)
wher‘e we have introduced ' L
d =mN-2-J (a,b) ' T e
JR : : . . N ¢
. [a+c,2,, ab -c2, ] S )
D =mNt gp-c2, b2+c2, (
a2+ca2ve+aR 'ab"cazve_’_bR.
: Ju IR Fa Fr (e
K =mN ab-cd R b tch . bR ) '
JB JR Ja -JR-

‘We note that while the diffusion matrix Dis symmetnc, this'is only so for K when 4 = B. We
note that X has the determinant

Jokzcm s ' ‘ t o ' )
(mN) @

"

K=Kl =g 5

7.2 Equilibrium ! ‘ A "
As time grows, the solutions to the dynamical equat:ons approach their equilibrium values,

which are characterized by the stationary condition S =0and o = 0. Thus the equilibrium
values are determined by the equations

SeK=d
g K+ Kleg =2D | | S ®
It can readily be verified that the corresponding solutions are
$4 ol

S(@) = (G, 5D

Fr

— +1 -
P /T/ N ! ©)
g, s, ) Fr w1l L Lo -

Iy ' T '

in accordance with our px"evious'dié'(:u:s‘sion of thermal equilibrium in _Sec_:tion II-3. -~

111
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7.3 Evolution of the mean values

The dynamical equation (3) for S has the general solution
St) =S, (1-e™") +5,(1-¢7) (10)

where &, and «, are the eigenvalues of K determined by | K ~« I | = 0.

In order to determine S, and S, we exploit the facts that at long times we have
S, +S,=S(@) =de K (1~ ®) (1)

and at short times we have ‘
§1 Kt +§2xzt =dt (r—0) (12)

These two linear equations can easily be solved to give

s, = [d - x2 S(o0)]
- Ky = K
S, = —— x S(c0) -d = S(x) - S, | | (13)
- Ky — K2 nd

The two eigenvalues «; are determined by
O =|K-«I|=(K"-x)(K®® -x)- K*BKP
=K - (K" + Ky« + & (14)

Therefore,
%, = K™ + KB® + [(K* + KBP)% - 4K]'?

2 2.2
1 cave jOR Cave
=(— + -—+—2 4 —2 T 1y N - 15)
(ﬁ 3 * [(= ) 7. % JR] ) (
where
2 2 2
% T b + R
I Fa I IR
1 _ 1 1 _ 1
A7 | (1o
In the limit where ¢2, << R? we thus find
1 Cave Jo ‘_‘ Rz Cazve mN
=k R(— + = mN = — =&
M= TS T TS ) B
S iR ¢ - -
Ky =K. = ;,A A j:e mN =k, <<k (17)

i.e., there is a short relaxation time, #; = 1/k,, associated with the temporary establishment of a rol-
ling motion, and a long relaxation time, #; = 1/x,, associated with the ultimate approach to the ther-

mal limit. It is useful to introduce the rolling spin S Su = ;R J (a,b). It then follows that
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2

¢

S, =du + 0(k—"; =~ S, (18)
so that we have approximately the simple result .

S = S, (1-e7") +(S(0) - §,)(1 - ) (19)
7.4 Evolution of the covariances

In the special case of a symmetric dinucleus, 4 = B, the matrix K is symmetric and the
same transformation diagonalizes K and K ' simultaneously. Hence, in that simple case the spin
covariances can be treated within the same two-dimensional formalism. However, in general A#B
and it is necessary to employ a three-dimensional formulauon Thus, the spin covariances are
represented by the quantity

- Bl
Z (a5, 75 o33) ' (20)
Furthermore, we need the diffusion coefficients

D = (0, DB, DS

= mNt' (a* + c3., ab - c2,, b* + c2.) (@D
and the coupling matrix
2K K% 0 <
K = | 2kB4 k4% + K58 2Kk4B ' (22)
<>
0 KBA ZKBB

where the elements are those of the 2 X 2 matrix K introduced in the treatment of the mean
values.
With these notational tools, the equation of motion for the covariances can be written

g =2D-ag * K ‘ : (23)

o> - m> <>

Furthermore, the equilibrium solution is given by

FaF o Fr Fr
) =2D* K= +1,-1,=% +1
g(®) =2D* K AR 5, 7D (24)
in accordance with our previous result.
The general dynamical solution has the form
3 -k
g =T, (- (25)
jm] ™
where k; are the eigenvalues of K determined by | K -k | = 0. In order to determine o
we proceed in analogy with the treatment of the mean Values a<‘a>cxp101t the relationship =
Ekn —2_D>* 4159"_‘ . _ (26) '

i=1

for n = 0,1,2. [For n = 0 the relation follows when ¢t — 00, and for n > 0 it follows by expansion
in powers of ¢ for t = 0.] We thus have the three equations -
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= * b -
g te,te,=20% K7 = g(»)
klg>| + k22>z + k3ﬂ¢:'>3 = 2=_D>
2 2 2 = *
k1¢=r>l + k2-¢3>2 + k3:>3 Z_Q <§> (27)

They have the following solution
o, =[2D* K -2(ky+ky) D+ kik3) g(o)]/kizky3

=>

o, =[-2D * K +2k; +ks) D -kiks) g(0)]/kipk

Lo
| 9= (2D *+ K - 2ky T k) D+ kiky) _‘_f>(°°)]/k13k23 | (28)
where k;; = k; - k;. The three eigenvalues k; are determined by
0=| K-k I |
<> <=>
= [(2KY - k)(2K®B - k) - 4K*8 KB [k + KBB - k] (29)
so that
kl = 2K1
kz = Ky + Ky
k3 = 2K2

where «; are the eigenvalues of K pertaining to the mean values. It then follows that

2

¢=7>,=_Qt1+ w(c:;)z:;ou
Cave b-a
9. o( R2) 0 ( R )<<¢_r>1,g>3
Cave
9= g(@®-g,+ O0(3) (1)

where o,,; =& 7* (a%ab,b?). Consequently, we have approximately the simple form
= -

()= gu (1-e™) + (g(®) = gu) (1-¢77) (32)

Thus, the evolution of the covariances also exhibits a quick relaxation towards a rolling situation fol-
lowed by a slower relaxation towards the true equilibrium. The intermediate relaxation associated
wih the eigenvalue k, = % k| = «; plays no essential role because of the relative smallness of the
corresponding constant ¢ .; in the symmetric case o , vanishes entirely. We note that o8 is posi-

. . L= L= . .
tive while 0#(c0) is negative, so that a;,},” first increases relatively quickly and then, more slowly,
decreases towards the asymptotic value.
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PROBLEMS

" Prove that the master equation [I-1(1)] and its Fokker-Planck approximation [I-1(9)] yield

identical time derivatives of mean values and covariances.

Show that after a nuclear reaction the mean fragment spin is directed along the reaction
normal and that this direction is a principal direction.

‘Hint: Use parity conservation in conjunction with a reflection in the reaction plane to show

that <S,> = <S§,> = <§,§,> = <§,§5,> = 0 where J is the reaction normal.

Derive the analogous form of equation [II-1(3)] for the normal form of the rotational hamil-
tonian expressed in the L-allgned coordinate system xpz introduced in Section II-2.

" Hint: Proceed as in Section II-1 but define § = (S,, S, - J, s/ £, S;) rather than [II-

1(2)].

Show the expressnon [11-6(9)] for the early time evolution of ot the covariance of the
positive spin mode in the direction of the dinuclear axis.

Hint: Rewrite the coupled equations [II-5(1)] in terms of u, * and expand in powers of ¢
around zero, starting with ¢ = 0.

Find the evolution of the spin covariances along the reaction normal in the symmetric case
A =B.

Hint: Use a two-dimensional formulation and exploit the results for the mean values derived
in Section II-7.3.
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Solution to problem 1
Insertion of the Fokker-Planck time derivative [I-1(9)] into equations (5) and (7) yields

%,=fdc%,[—za; D /1
J

6‘6 6‘6
=.fdv‘6 Vif +0] + <V>
oy = [dC 6 €, [.1-6 €,-6 €,
=[dC€[% V;+V. € +D; +D;lf -<_V,.‘>§_,--§?, <1/,>
=<D; +D; +A%6, V; +V,A€;> .
Wthh are identical to the expressions (5) and @) obtamed with the master equauon (1)

Solutlon to probIem 2

Under reﬂectlon in the reaction plane (the Xz plane) we have F=(x,y,z)—

=(x,~y,z), and P =(px.py.p;) P’ (pz,-py.p;) S0 that §=FXp=
(85x,8y,8:) =S = (=54,S,,-S;). Smce the harmltoman 1s parnty invariant we must have

<§> = <§’> and <Sf-§> <S’S >. Hence
<S> =<-§5> = <5>=0
<§,>=<-5,> = <§,>=0

so that <S> is direction along the reaction normal $. Furthermore
<SSy > = <=-8,85,> = <5,:5,>=0

<S,8,> = <S,(- §,)> = <§,5,> =0

S0 that the y-components are decoupled, i.e., y is a principal direction.

. Solunon to probIem 3 v
-In the xyz system we have 7 = R and y = L. We define the followmg spin variables

(S,S, - 1, S,) =(J I Fs
5= x, = k) .
y J g T g,
S-=_ A_______ B

fss fsS

where Fg = 4+ I and f_ = $, 5/ Fs (see Section .IIf6). We then insert into the rota-
tional hamiltonian

qA? gBr 2

S + S + L

2 jA 2 jB c 2 jR

Koot =

- NN N SO WP A N S (__S)_2_
21,,( TS SN A g (G S-S T
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”A (——-s + 8 + —— 2 (——s - 8;)?
+ 2;,. (——s +5)% + 213 (% s,-s;)2-+ T‘,;-(% g, -5,
ZJA(_S +S‘)2+-—-——(—S -857)?
= ;fi + (2S2 + 2{;2‘, + ZJ':;R P (zs 22 + 2SJZ: * (5 .z;)_z
- 2{;, + 21?1 (s¢ +s‘)+7}?i;"2 2§;_

and obtain the desired normal form analogous to [II-1(3)].

Solution to problem 4

The relevant equations for o,t * at early times read

o4t =2wg ot  (since Mttt =0)
++ ++

Ox; = WR Oxx

axx =27 Mt

The last equations gives
ot = 2 Mt

so that the second equation can be integrated to give
ot =1 MY g t?

Hence, in turn, we obtain
ot = § r MYt ei

as quoted in [II-6(9)].

Solution to problem 5
Since 4 = B we need only consider ¢ = (e, o). The corresponding dynamical equa-
tion is then
§=2-2" K
where D = (D4, D“B). This equation is of the same form as the equation [II-7(3)] for the mean
values. Hence we obtain the result [II-7(19)] with the substitutions S = g, d ~ D, and ; = 2x;.
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